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In the paper we comment on[Rüdiger and ShalybkovsRSd, Phys. Rev. E69, 016303s2004d ], the instability
of the Taylor-Couette flow interacting with a homogeneous background field subject to the Hall effect is
studied. We correct a falsely generalizing interpretation of results presented there which could be taken to
disprove the existence of the Hall-drift-induced magnetic instability described in Rheinhardt and Geppert,
Phys. Rev. Lett.88, 101103s2002d. It is shown that, in contrast to what is suggested by RS, no additional shear
flow is necessary to enable such an instability with a nonpotential magnetic background field, whereas for a
curl-free one it is. In the latter case, the instabilities found in RS in situations where neither a hydrodynamic
nor a magnetorotational instability exists are demonstrated to be most likely magnetic instead of magnetohy-
drodynamic. Further, some minor inaccuracies are clarified.
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I. NECESSARY CONDITIONS FOR FLOW INSTABILITIES
WITH HALL EFFECT

The main purpose of this Comment on the paper in Ref.
f1g shereafter referred to as RSd is to prevent an incorrect
conclusion with respect to our workf2,3g which could be
drawn from an incorrect statement in the discussion section
of RS. There, at the end of the third paragraph, the authors
conclude from the invariance of their results with respect to
simultaneous sign inversions of shear and Hall term that no
instabilities are possible without shear. Although this conclu-
sion, being looked at out of context, is not comprehensible, it
is nevertheless true for the special case of a homogeneous
smore generally, curl-freed background fieldB0, but not in
general. As the schemes40d of RS is valid for nonpotential
saxisymmetricd fields, too, and the quoted conclusion is
drawn completely on its basis, the reader will be tempted to
generalize it. He or she could then come to the conclusion
that the results on a Hall instabilitywithoutshear reported in
f2,3g have to be called into question.sNote that the term
“shear” is used throughout RS to refer to the macroscopic
motion of a fluid.d Here, we will show that conclusions on
necessary conditions for the instabilities in question can re-
liably be drawn on the basis of energy considerations. They
support the possibility of a Hall instability without shear.

The linearized induction and Navier-Stokes equations de-
scribing the evolution of small perturbationsB8 andu8 of the
background fieldB0 and the shear flowshere, differential
rotationd u0, respectively, read for a curl-freeB0
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where we used the symbols introduced in RS. Standard ar-
guments yield the following evolution equation for the total
energyE of the perturbations:
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with V8 being the infinite space minus any volume with in-
finite conductivity andV the volume of the container. Of
course, solutions with growing total energy are impossible,
as long asu0=0. More generally, even if we were to admit a
rigid body motion foru0, growing solutions do not exist.

The situation changes qualitatively, ifB0 is no longer
curl-free: The additional term −b curlscurl B03B8d occur-
ring in the linearized induction equation results in the addi-
tional energy term

− bE
V

curl B8 · scurl B0 3 B8ddV/m0, s4d

which quite analogously to the termeV curl B8 ·su0

3B8ddV/m0 is potentially capable of delivering energy.
Hence, the argument concerning the necessity of shear for
the occurrence of an instability in the model of RS in fact
supports our findings inf2,3g, when the term “shear” is no
longer used to refer to macroscopic motions only, but is ex-
tended to the microscopic motions of the carriers creating the
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current curlB0/m0. If the latter should be capable of replac-
ing the shear velocityu0, it must not be interpretable as a
rigid body motion. Therefore, a background field exhibiting a
sufficiently curved profile is a necessary condition for the
occurrence of the instability we reported on, as we stressed
in all our papers on this issue.sA suitable profile for a plane
slab −1øzø1 with its normal in thez direction is, for in-

stance,B0=B̂0s1−z2dex, as used inf2g.d
As the energy terms4d contains only magnetic fields, the

possibility exists that even in the absence of any macroscopic
motionssu8=u0=0d, say in a crystallized neutron star crust,
nevertheless an instability may occur. For plane geometry we
demonstrated that this possibility is real both for a uniform
f2g and a stratified slabf4g. In the cylindrical geometry con-
sidered in RS, the instability occurs as well. Figure 1 shows
normalized growth rates and wave numbers of the most rap-
idly growing axisymmetric modes versus the normalized
strength of the background field. Its profile was specified as
B0sRd~ sR−Rind2sR−Routd2ez.

The second additional energy term due to a nonpotential
background field,

E
V

u8 · scurl B0 3 B8ddV/m0, s5d

is capable of delivering or consuming energy, too. Corre-
sponding instabilities exist and aresfor u0=0d usually re-
ferred to as unstable Alfvén modesssee, e.g.,f5gd. Their
nature is obviously MHD, as Eq.s5d vanishes foru8=0
and/orB8=0.

II. MAGNETIC VS MHD NATURE OF INSTABILITIES

Another remark connected with the above seems to be
appropriate. In the Results and Discussion sections of RS,

the impression is given that the reported instability is prima-
rily one of the flow. In our opinion, there are good reasons,
and moreover even evidence provided by RS itself, to inter-
pret this instability as a primarily magneticsand not MHDd
one for conditions in which the flow would be stable other-
wise sthat is, for “positive shear” and for “negative shear”
with subcritical Reynolds numbers, i.e., for the part of the
Re-Ha plane beneath the dashed line in Fig. 6 of RSd.

Considering the induction equation including differential
rotation and Hall effect with the velocity perturbations sup-
pressedsi.e., the kinematic cased, one has formally the same
equation as that which describes mean-field dynamos due to
differential rotation and the so-calledv3 j effect; seef6,7g.
From these calculations and also from qualitative consider-
ations, it follows that the sign relation between Hartmann
number Ha anddV /dR reported in RSssee, e.g., Sec. IIId is
just the one necessary for dynamo action, that is, amagnetic
instability. sNote that Cowling’s theorem does not apply.d In
Sec. III B of RS, a marginal curve in the Re-Ha plane is
given for the kinematic caseu8=0. In that part of the plane
where no hydrodynamic or magnetorotational instability
sMRId exists, it practically coincides with the marginal curve
of the full system’s instability. Thus, one may suppose that
the velocity perturbations are simply “enslaved” by the mag-
netic ones in cases in which no instabilities occur without the
Hall effect. Since an enslavedu8 gives rise to additional
dissipation, the full system should exhibit smaller growth
rates compared with those of the kinematic case. A hint on
this is provided by Fig. 6 of RS, showing that for 1&Ha
&7 in the full system a slightly stronger differential rotation
is needed for marginal stability than in the kinematic case. To
judge the nature of the instability, the signs of those integrals
in Eq. s3d resulting from the potentially energy-delivering
terms with the calculated eigensolutions inserted could be
inspected.

When assuming the primarily magnetic character of the
instability, its suppression with growingsabsolute value of
thed Hartmann numberscf. Figs. 2–4, 7, and 8 of RSd can be
explained by the competition of two counteracting effects:
On the one hand, growinguHau means growing dominance of
the energy-delivering advection term, curlsu03B8d, in Eq.
s1d sby virtue of the admittedly energetically neutral but
“catalyzing” Hall termd over the dissipation term. But on the
other hand, it means also growing efficiency of the Lorentz
force in Eq.s2d which causes growing dissipation due to the
enslaved velocity perturbations which drain their energy by
virtue of the second advection term, curlsu83B0d, in Eq. s1d
out of the magnetic perturbations. Hence, the occurrence of a
minimum with respect to Ha is quite natural.

III. CURRENT–FREE SOLUTION

Within the discussion of Fig. 5 of RSsSec. III Ad, it is
falsely stated that the existence of the current-free marginal
solution BR8 =Bz8=0, Bf8 ~R−1, u8=0 requiresboth boundary
conditions to be those of the perfect conductor. In fact, there
is no reason why such a current-freesor vacuumd solution
could not continue from the inner boundaryR=Rin on to
infinity, which means nothing more than satisfying the cor-

FIG. 1. Growth ratessthickd and wave numberssthind of the
most unstable axisymmetric magnetic-field modesskinematic case,
u8=0d as a function of the background field strength. Length, time,
and magnetic field are normalized byRout, Rout

2 /h, andh /b, respec-
tively. Bmax represents the maximum of the background field profile.
Rin /Rout=ĥ=0.5. Boundary conditions as defined in RS. Vacuum-
vacuum: solid; inner perfect conductor–outer vacuum: dashed; per-
fect conductor–perfect conductor: dot-dashed. The eigenmodes are
nonoscillatory in the first two cases, but oscillatory in the third.
Interestingly, for the vacuum-vacuum boundary condition, the insta-
bility emerges roughly atBmax*3 as in the plane model.
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responding vacuum condition at the outer rimR=Rout. The
necessary and sufficient condition for the existence of this
vacuum solution everywhere outside the surfaceR=Rin is the
existence of a net current in thez direction enclosed by this
surface. Because an outer electromotive force is missing, a
perfect conductor in the interior of the inner cylinder is
needed. Then, e.g., an arbitrary surface current can flow
without losses and therefore endlessly.

However, the dashed and the dot-dashed curves in Fig. 5
which correspond to the perfectly conducting inner cylinder
are incomprehensible anyway, as they both should coincide
with the curvek=0: This figure is intended to show the wave
number belonging to the marginal eigensolution with the
minimum Reynolds number for a given Hartmann number.
In case the inner boundary condition is “perfect conductor,”
the vacuum solution always exists, which is marginal and
allows also Re=0sor, equivalently,u0=0d, i.e., is associated
with the minimum possible Re. This solution is characterized
by k=0 and the mentioned curves should show that, except
when there were other marginal solutions with Re=0, butk

Þ0. But such solutions do not exist, because for Re=0 and
any Ha there is nospotentiallyd energy-delivering term in the
induction equationfsee Eq.s3dg and the only possibility for a
marginal si.e., nondecayingd solution is the vacuum one.
Thus it appears that the vacuum solution was excluded for
unknown reasons from the analysis which led to Fig. 5 and
can therefore not be referred to to explain it.

However again, even then Fig. 5 is in disagreement with
Fig. 2 of RS. The dashed line in the former should corre-
spond to the solid line in the latter figure, which shows no
special behavior at Ha=−2 wherek becomes zero in Fig. 5.

IV. MISSING REFERENCES

Considerations of the effect of turbulence on the Hall co-
efficient do existf8,9g ssee the last paragraph of RSd. Perhaps
it is appropriate to mention here a recent revival of mean-
field Hall electrodynamics inf10g, although there only the
effect of the Hall drift onto thea coefficient is considered.
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